学术动态

位置: 首页 > 科学研究 > 学术动态 > 正文

学术报告17: 欧阳毅 — Unboundedness of Tate-Shafarevich groups in cyclic extensions

时间:2023-03-13 作者: 点击数:

报告时间:2023年3月16日(星期15:00

报告地点:翡翠科教楼B1710

报 告 人:欧阳毅 教授

工作单位:中国科学技术大学

举办单位:j9九游会官网

报告简介:

Suppose K is a global field, L/K is a cyclic extension and A/K is an abelian variety. In this talk, we prove several unboundedness results of the Tate-Shafarevich groups Sha(A/L) under the conditions that:

(1) A is a fixed abelian variety over K and L varies over cyclic extensions of K of the same degree, which give an affirmative answer to an open problem proposed by K. Cesnavicius;

(2) L/K is a fixed cyclic extension, and either K is a number field and A varies over elliptic curvesor the degree of L/K is 2-power and A varies over quadratic twists of a principally polarized abelian variety, which generalize results of K. Matsuno and M. Yu respectively.

This is a joint work with Jianfeng Xie.

报告人简介:

欧阳毅,中国科学技术大学数学系教授,博士生导师。中国科大学士(1993)、硕士(1995),美国明尼苏达大学博士(2000)。毕业后在加拿大多伦多大学和清华大学工作,2006年回中国科大任教授。主要研究方向为代数数论和算术代数几何。2018年被评为安徽省教学名师,并荣获2017年宝钢优秀教师奖和2022年霍英东教育教学奖等荣誉。发表SCI论文40余篇,包括国际著名数学期刊CrelleCompositio Math,等,并与国际著名数学家FontaineBenois完成论著Theory of p-adic Galois representations



上一篇:学术报告18: Xavier Mary系列报告二则

下一篇:学术报告16: 廖金宝 — 集合群落理论框架的构建及其应用