学术动态

位置: 首页 > 科学研究 > 学术动态 > 正文

学术报告八十四:江宁 — Grad-Caflisch type decay estimates of pseudo-inverse of linearized Boltzmann operator and application to Hilbert expansion of compressible Euler scaling(流体力学中的偏微分方程系列讲座之三 )

时间:2022-09-08 作者: 点击数:

报告时间:2022年9月9日(星期14:30-15:30

报告地点:腾讯会议:541-450-744

人:江宁 教授

工作单位:武汉大学

举办单位:j9九游会官网

报告简介:

we prove some Grad-Caflisch type decay estimates of the pseudo-inverse of linearized Boltzmann collision operator,including both the hard potential ($0 \leq \gamma \leq 1$) and part of soft ($- \frac{3}{2} < \gamma < 0$) potential cutoff interaction kernels. The key idea is that the weighted $L^\infty$-norms of $( \L - \nu ) f$ are first dominated by the weighted $L^2$-norms of $f$, and then the $L^2$-norms are bounded by the $L^\infty$-norms of $\L f$ via the hypocoercivity of the weighted operator $\L$. The proof of the weighted hypocoercivity employs the high-low velocities estimates argument. Finally, these decay estimates are further applied to derive some new point-wise estimates for the Hilbert expansion terms of the Boltzmann equation in the compressible Euler scaling.


报告人简介:

江宁教授,博士生导师。长期从事Boltzmann方程及其流体极限,液晶方程和生物数学中的方程研究.已在CPAM, Annals of PDEs, JFA, JMPA, CPDE, ARMA等国际一流杂志发表40余篇文章。


上一篇:学术报告八十五:李亚纯 — Sharp non-uniqueness of weak solutions to MHD equations(流体力学中的偏微分方程系列讲座之四 )

下一篇:学术报告八十三:徐江 — Global existence in critical spaces for non Newtonian compressible viscoelastic flows(流体力学中的偏微分方程系列讲座之二 )